Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing
Jonas Mueller, Vasilis Syrgkanis, Matt Taddy
Amazon Microsoft Research Amazon jonasmueller@csail.mit.edu

Summary

- Dynamic pricing \(\approx \) online bandit optimization
- Bandit pricing can handle changing (adversarial) environments
- Number of pricing rounds until standard bandits find optimal prices (vanishing regret) depends on \# of products
- Observed product demands provide side information if they evolve in a low-rank fashion based on (latent) product features
- We develop bandit pricing algorithms that exploit this assumption, whose regret vanishes at a rate that only depends on \# of product features instead of \# of products

Objective

Choose prices for many products to maximize revenue/profit. Update prices over time to reflect changing demand curves.

Setup

- \(\mathbf{p}_t = \) vector of prices for \(N \) products sold during time-period \(t \)
- \(q_t \in \mathbb{R}^N = \) vector of demands for each product in time-period \(t \)
- \(R_t(\mathbf{p}_t) = \) total revenue over period \(t = (q_t, \mathbf{p}_t) \)
- Regret = \(\mathbb{E} \left[\sum_{t=1}^{T} R_t(\mathbf{p}^* - R_t(\mathbf{p}_t)) \right] \)
- \(\mathbf{p}^* = \) optimal price vector (chosen in hindsight)

Standard Demand Model

- \(q_t = \mathbf{c}_t - \mathbf{B}_t \mathbf{p}_t + \mathbf{e}_t \)
 - \(\mathbf{B}_t \) describes how price of products affects demand for other products in round \(t \) (asymmetric, positive definite matrix)

- Can achieve \(O(T^{3/4}N^{1/2}) \) regret using standard online bandit method to select prices under this model
- Flaxman, Kalai, McMahan (2005): Online convex optimization in the bandit setting: Gradient descent without a gradient

Idea: Set price \(\mathbf{p} + \delta \mathbf{e} \) instead of \(\mathbf{p} \) with \(\mathbf{e} \) = random unit vector. For \(\hat{R}(\mathbf{p}) := R(\mathbf{p} + \delta \mathbf{e}) \): \(\nabla \hat{R}(\mathbf{p}) = \mathbb{E} [\nabla R(\mathbf{p} + \delta \mathbf{e})] \mathbf{e} / \delta \)

Product Features

- Let \(\mathbf{u}_i = d \)-dimensional features of product \(i \) \((d \ll N) \)
- Product similarity = \((\mathbf{u}_i, \mathbf{u}_j) \) for \(p_i = \mathbf{u}_i \mathbf{V} \mathbf{u}_j \cdot p_j \)

Low-Rank Demand Model

- \(q_t = \mathbf{U} \mathbf{c}_t - \mathbf{U} \mathbf{V}^T \mathbf{p}_t + \mathbf{e}_t \)
- \(\mathbf{U} = N \times d \) matrix, whose rows = product features

Known Product Features

- Algebra \(\implies R_t(\mathbf{p}) = f_t(\mathbf{x}) \) for concave \(f_t \) and \(\mathbf{x} := \mathbf{U}^T \mathbf{p} \in \mathbb{R}^d \)
- Strategy: use bandit algorithm to optimize \(\mathbf{x}_t \) w.r.t. \(f_t \), each time selecting prices \(\mathbf{p}_t \) via pseudo-inverse s.t. \(\mathbf{x}_t = \mathbf{U}^T \mathbf{p}_t \)
- Regret = \(O(T^{3/4}d^{1/2}) \) (does not depend on \(N \))

Unknown Product Features

- Assume orthonormal product features: \(\mathbf{U} \mathbf{x} = \mathbf{p} \) for \(\mathbf{x} = \mathbf{U}^T \mathbf{p} \)
- Previous strategy does not need known \(\mathbf{U} \), only need span(\(\mathbf{U} \))
- If \(\mathbf{e}_t = 0 \), then span(\(\mathbf{U} \)) = span(\(q_1, \ldots, q_d \))
- When \(\mathbf{e}_t \neq 0 \), we can estimate span(\(\mathbf{U} \)) via SVD of \([q_1, \ldots, q_d] \)
- Run bandit algorithm to optimize \(\mathbf{x}_t = \hat{\mathbf{U}}^T \mathbf{p}_t \) w.r.t. \(f_t \)
 when span(\(\mathbf{U} \)) = current estimate of span(\(\mathbf{U} \))
- Regret = \(O(T^{3/4}d) \) (does not depend on \(N \))

Algorithm 1 Online Pricing Optimization with Latent Features

Input: \(\eta, \delta, \alpha > 0 \), rank \(d \in [1, N] \), initial prices \(\mathbf{p}_0 \in \mathcal{S} \)
Output: Prices \(\mathbf{p}_1, \ldots, \mathbf{p}_T \) to maximize overall revenue

- Initialize \(\hat{\mathbf{Q}} \) as \(N \times d \) matrix of zeros
- Initialize \(\hat{\mathbf{U}} \) as random \(N \times d \) orthogonal matrix
- Set prices to \(\mathbf{p}_0 \in \mathcal{S} \) and observe \(q_t(\mathbf{p}_0), R_t(\mathbf{p}_0) \)
- Define \(\mathbf{x}_0 = \hat{\mathbf{U}}^T \mathbf{p}_0 \)
- for \(t = 1, \ldots, T \):
 - \(\mathbf{x}_t := \hat{\mathbf{U}}^T \mathbf{x}_0 + \hat{\mathbf{U}}^T \mathbf{\xi}_t \), where \(\mathbf{\xi}_t \sim \text{Unif}(\{\mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_2 = 1\}) \)
 - Set prices: \(\mathbf{p}_t = \hat{\mathbf{U}} \mathbf{x}_t \) and observe \(q_t(\mathbf{p}_t), R_t(\mathbf{p}_t) \)
 - \(\mathbf{\xi}_t \) = \(\text{projection}(\mathbf{x}_0 - \eta R_t(\mathbf{p}_t), \mathbf{\xi}_t) \)
 - \(\mathbf{Q}_{t+1} := \frac{1}{t} \theta_t + \mathbf{Q}_t \)
 - Set columns of \(\hat{\mathbf{U}} \) as top \(d \) left singular vectors of \(\mathbf{Q}_t \)

Evolving Demand Model